
Udacity SQL course codes→

SELECT a.primary_poc, w.occurred_at, w.channel, a.name
FROM web_events w
JOIN accounts a
ON w.account_id = a.id
WHERE a.name = 'Walmart';

The abbreviation of ‘a’ and ‘w’ occurs after stating the table in lines 2 and 3

Joins

SELECT c.countryid, c.countryName, s.stateName
FROM Country c
JOIN State s
ON c.countryid = s.countryid;

It’ll produce→

Whereas a LEFT JOIN will look like the following

SELECT c.countryid, c.countryName, s.stateName
FROM Country c
LEFT JOIN State s
ON c.countryid = s.countryid;

Left Join gives us results when we want to see blank results.

Provide a table that provides the region for each sales_rep along with their

associated accounts. This time only for the Midwest region. Your final table should

include three columns: the region name, the sales rep name, and the account name.

Sort the accounts alphabetically (A-Z) according to account name.

SELECT r.name region, s.name rep, a.name account
FROM sales_reps s
JOIN region r
ON s.region_id = r.id
JOIN accounts a
ON a.sales_rep_id = s.id
WHERE r.name = 'Midwest'
ORDER BY a.name;

Provide a table that provides the region for each sales_rep along with their
associated accounts. This time only for accounts where the sales rep has a first name
starting with S and in the Midwest region. Your final table should include three columns:
the region name, the sales rep name, and the account name. Sort the accounts
alphabetically (A-Z) according to account name.

1. SELECT r.name region, s.name rep, a.name account
2. FROM sales_reps s
3. JOIN region r
4. ON s.region_id = r.id
5. JOIN accounts a
6. ON a.sales_rep_id = s.id
7. WHERE r.name = 'Midwest' AND s.name LIKE 'S%'

ORDER BY a.name;

Provide a table that provides the region for each sales_rep along with their
associated accounts. This time only for accounts where the sales rep has a last name
starting with K and in the Midwest region. Your final table should include three columns:
the region name, the sales rep name, and the account name. Sort the accounts
alphabetically (A-Z) according to account name.

1. SELECT r.name region, s.name rep, a.name account
2. FROM sales_reps s
3. JOIN region r
4. ON s.region_id = r.id
5. JOIN accounts a
6. ON a.sales_rep_id = s.id
7. WHERE r.name = 'Midwest' AND s.name LIKE '% K%'

ORDER BY a.name;

Provide the name for each region for every order, as well as the account name and
the unit price they paid (total_amt_usd/total) for the order. However, you should only
provide the results if the standard order quantity exceeds 100 and the poster order
quantity exceeds 50 . Your final table should have 3 columns: region name, account
name, and unit price. Sort for the smallest unit price first.

1. SELECT r.name region, a.name account, o.total_amt_usd/(o.total + 0.01) uni
t_price

2. FROM region r
3. JOIN sales_reps s
4. ON s.region_id = r.id
5. JOIN accounts a
6. ON a.sales_rep_id = s.id
7. JOIN orders o
8. ON o.account_id = a.id
9. WHERE o.standard_qty > 100 AND o.poster_qty > 50
10. ORDER BY unit_price;

JOINs

In this lesson, you learned how to combine data from multiple tables using JOINs. The
three JOIN statements you are most likely to use are:

1. JOIN - an INNER JOIN that only pulls data that exists in both tables.
2. LEFT JOIN - pulls all the data that exists in both tables, as well as all of the rows from the

table in the FROM even if they do not exist in the JOIN statement.
3. RIGHT JOIN - pulls all the data that exists in both tables, as well as all of the rows from the

table in the JOIN even if they do not exist in the FROM statement.
There are a few more advanced JOINs that we did not cover here, and they are used in very specific
use cases. UNION and UNION ALL, CROSS JOIN, and the tricky SELF JOIN. These are more advanced
than this course will cover, but it is useful to be aware that they exist, as they are useful in special
cases.

Find the total sales in usd for each account. You should include two columns - the total
sales for each company's orders in usd and the company name.

1. SELECT a.name, SUM(total_amt_usd) total_sales
2. FROM orders o
3. JOIN accounts a
4. ON a.id = o.account_id

GROUP BY a.name;

Find the number of sales reps in each region. Your final table should have two columns
- the region and the number of sales_reps. Order from fewest reps to most reps.

1. SELECT r.name, COUNT(*) num_reps

https://www.w3schools.com/sql/sql_union.asp
http://www.w3resource.com/sql/joins/cross-join.php
https://www.w3schools.com/sql/sql_join_self.asp

2. FROM region r
3. JOIN sales_reps s
4. ON r.id = s.region_id
5. GROUP BY r.name

ORDER BY num_reps;

HAVING - Expert Tip

HAVING is the “clean” way to filter a query that has been aggregated, but this is

also commonly done using a subquery. Essentially, any time you want to perform

a WHERE on an element of your query that was created by an aggregate, you

need to use HAVING instead.

How many of the sales reps have more than 5 accounts that they manage?
SELECT s.id, s.name, COUNT(*) num_accounts
FROM accounts a
JOIN sales_reps s
ON s.id = a.sales_rep_id
GROUP BY s.id, s.name
HAVING COUNT(*) > 5
ORDER BY num_accounts;

It’s important to have the COUNT(*) ‘count all’ function at the top to allow the columns to be

grouped.

Which accounts used facebook as a channel to contact customers more than 6 times?
1. SELECT a.id, a.name, w.channel, COUNT(*) use_of_channel
2. FROM accounts a
3. JOIN web_events w
4. ON a.id = w.account_id
5. GROUP BY a.id, a.name, w.channel
6. HAVING COUNT(*) > 6 AND w.channel = 'facebook'

ORDER BY use_of_channel;

Which account used facebook most as a channel?
SELECT a.id, a.name, w.channel, COUNT(*) use_of_channel
FROM accounts a
JOIN web_events w
ON a.id = w.account_id
WHERE w.channel = 'facebook'
GROUP BY a.id, a.name, w.channel
ORDER BY use_of_channel DESC
LIMIT 1;

https://community.modeanalytics.com/sql/tutorial/sql-subqueries/

TIMEFUNCTIONS

Which year did Parch & Posey have the greatest sales in terms of total number

of orders? Are all years evenly represented by the dataset?
SELECT DATE_PART('year', occurred_at) ord_year, COUNT(*) total_sales
FROM orders
GROUP BY 1
ORDER BY 2 DESC;

In which month of which year did Walmart spend the most on gloss paper in

terms of dollars?

SELECT DATE_TRUNC('month', o.occurred_at) ord_date, SUM(o.gloss_amt_usd) tot_spen
t
FROM orders o
JOIN accounts a
ON a.id = o.account_id
WHERE a.name = 'Walmart'
GROUP BY 1
ORDER BY 2 DESC
LIMIT 1;

We would like to understand 3 different branches of customers based on the amount
associated with their purchases. The top branch includes anyone with a Lifetime Value
(total sales of all orders) greater than 200,000 usd. The second branch is
between 200,000 and 100,000 usd. The lowest branch is anyone under 100,000 usd.
Provide a table that includes the level associated with each account. You should
provide the account name, the total sales of all orders for the customer, and the level.
Order with the top spending customers listed first.

2. SELECT a.name, SUM(total_amt_usd) total_spent,
3. CASE WHEN SUM(total_amt_usd) > 200000 THEN 'top'
4. WHEN SUM(total_amt_usd) > 100000 THEN 'middle'
5. ELSE 'low' END AS customer_level
6. FROM orders o
7. JOIN accounts a
8. ON o.account_id = a.id
9. GROUP BY a.name

ORDER BY 2 DESC;

SUB QUERY and NESTING

Finally, here we are able to get a table that shows the average number of events a day
for each channel.

1. SELECT channel, AVG(events) AS average_events
2. FROM (SELECT DATE_TRUNC('day',occurred_at) AS day,
3. channel, COUNT(*) as events
4. FROM web_events
5. GROUP BY 1,2) sub
6. GROUP BY channel
7. ORDER BY 2 DESC;

Then to pull the average for each, we could do this all in one query, but for readability, I
provided two queries below to perform each separately.
SELECT AVG(standard_qty) avg_std, AVG(gloss_qty) avg_gls, AVG(poster_qty) avg_ps
t
FROM orders
WHERE DATE_TRUNC('month', occurred_at) =
 (SELECT DATE_TRUNC('month', MIN(occurred_at)) FROM orders);

SELECT SUM(total_amt_usd)
FROM orders
WHERE DATE_TRUNC('month', occurred_at) =
 (SELECT DATE_TRUNC('month', MIN(occurred_at)) FROM orders);

Provide the name of the sales_rep in each region with the largest amount

of total_amt_usd sales. →

SELECT S_Name, R_Name,MAX(Total)

FROM

(SELECT s.name AS S_Name,

r.name AS R_Name,

SUM(o.total_amt_usd) AS Total

FROM sales_reps s

JOIN region r

ON s.region_id = r.id

JOIN accounts a

ON s.id=a.sales_rep_id

Join orders o

ON a.id = o.account_id

GROUP BY 1,2) sub

GROUP BY 1,2

For the customer that spent the most (in total over their lifetime as a

customer) total_amt_usd, how many web_events did they have for each channel?

SELECT a.name, w.channel, COUNT(*)
FROM accounts a
JOIN web_events w
ON a.id = w.account_id AND a.id = (SELECT id
 FROM (SELECT a.id, a.name, SUM(o.total_amt_usd) tot_spent
 FROM orders o
 JOIN accounts a
 ON a.id = o.account_id
 GROUP BY a.id, a.name
 ORDER BY 3 DESC
 LIMIT 1) inner_table)
GROUP BY 1, 2
ORDER BY 3 DESC;

Provide the name of the sales_rep in each region with the largest amount

of total_amt_usd sales.

WITH Table1 AS (SELECT s.name AS Rep_name,

 r.name AS Region,

 SUM(o.total_amt_usd) AS Total_Usd

 FROM sales_reps s

 JOIN region r

 ON s.region_id=r.id

 JOIN accounts a

 ON s.id=a.sales_rep_id

 JOIN orders o

 ON a.id=o.account_id

 GROUP BY 1,2

 ORDER BY 3 DESC),

Table2 AS (SELECT Region,

 MAX(Total_Usd) AS Max_Total

 FROM Table1

 GROUP BY 1)

SELECT Table1.Rep_name, Table1.Region, Table1.Total_USD

FROM Table1

JOIN Table2

ON Table1.Region=Table2.Region AND Table1.Total_USD=Table2.Max_Total

What is the lifetime average amount spent in terms of total_amt_usd for the top

10 total spending accounts?

WITH t1 AS (
 SELECT a.id, a.name, SUM(o.total_amt_usd) tot_spent
 FROM orders o
 JOIN accounts a
 ON a.id = o.account_id
 GROUP BY a.id, a.name
 ORDER BY 3 DESC
 LIMIT 10)
SELECT AVG(tot_spent)
FROM t1;

CLEANING DATA

Use the accounts table and a CASE statement to create two groups: one group of

company names that start with a number and a second group of those company names

that start with a letter. What proportion of company names start with a letter?

SELECT SUM(num) nums, SUM(letter) letters
FROM (SELECT name, CASE WHEN LEFT(UPPER(name), 1) IN ('0','1','2','3','4','5'
,'6','7','8','9')
 THEN 1 ELSE 0 END AS num,
 CASE WHEN LEFT(UPPER(name), 1) IN ('0','1','2','3','4','5','6','7','8'
,'9')
 THEN 0 ELSE 1 END AS letter
 FROM accounts) t1;

In the accounts table, there is a column holding the website for each company. The

last three digits specify what type of web address they are using. A list of extensions

(and pricing) is provided here. Pull these extensions and provide how many of each

website type exist in the accounts table.

1. SELECT RIGHT(website, 3) AS domain, COUNT(*) num_companies
2. FROM accounts
3. GROUP BY 1
4. ORDER BY 2 DESC;

Use the accounts table to create first and last name columns that hold the first and

last names for the primary_poc.

1. SELECT LEFT(primary_poc, STRPOS(primary_poc, ' ') -1) first_name,
2. RIGHT(primary_poc, LENGTH(primary_poc) - STRPOS(primary_poc, ' ')) last_na

me
3. FROM accounts;

1. SELECT COALESCE(o.id, a.id) filled_id, a.name, a.website, a.lat, a.long, a.
primary_poc, a.sales_rep_id, o.*

2. FROM accounts a
3. LEFT JOIN orders o
4. ON a.id = o.account_id
5. WHERE o.total IS NULL;

Ranking Total Paper Ordered by Account

Select the id, account_id, and total variable from the orders table, then create a

column called total_rank that ranks this total amount of paper ordered

(from highest to lowest) for each account using a partition. Your final

table should have these four columns.

SELECT id,

https://iwantmyname.com/domains/domain-name-registration-list-of-extensions

 account_id,

 total,

 RANK() OVER (PARTITION BY account_id ORDER BY total DESC) AS total_rank

FROM orders

Use the NTILE functionality to divide the accounts into 4 levels in terms of the amount

of standard_qty for their orders. Your resulting table should have the account_id,

the occurred_at time for each order, the total amount of standard_qty paper purchased,

and one of four levels in a standard_quartile column.

SELECT
 account_id,
 occurred_at,
 standard_qty,
 NTILE(4) OVER (PARTITION BY account_id ORDER BY standard_qty)
AS standard_quartile
 FROM orders
 ORDER BY account_id DESC

